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Abstract—The game of chess is very widely studied in artificial
intelligence. In 2010s there was a breakthrough in programs
learning using reinforcement learning with no human involve-
ment and biases. This improvement was enabled using Monte
Carlo Tree Search and deep neural networks for searching and
evaluation. In this project, we explore the application of self-play
based reinforcement learning techniques to build a chess engine
from scratch, inspired by the groundbreaking AlphaZero, that
was able to achieve, tabula rasa, superhuman performance. We
train a program to learn to play chess starting with knowledge
of only the rules and learns via self-play only.

I. INTRODUCTION

Chess has been the grand challenge task for a genera-
tion of artificial intelligence researchers, culminating in high-
performance chess engines that perform at superhuman level.
In 1997, DeepBlue defeated the human world champion, Garry
Kasparov, 3.5-2.5. Over the following years the strength of
chess engines kept increasing steadily past the human level.

However, these programs are heavily specialized to their
domain and do not generalise well. These programs evaluate
positions using features handcrafted by human grandmas-
ters and carefully tuned weights, combined with a high-
performance alpha-beta search[5] that expands a vast search
tree using a large number of clever heuristics and domain-
specific adaptations. An ambition of artificial intelligence has
been to create programs that can learn for themselves from
basic rules.[7]

AlphaGol[ 1] is a program developed by DeepMind to the
game of Go. In 2016, AlphaGo became the first computer
program to beat a 9-dan Go player. It uses a combination of
machine learning and tree search techniques, combined with
extensive training, both from human and computer play. It uses
Monte Carlo tree search (MCTS), guided by a value network
and a policy network, both implemented using deep neural
networks. This was followed by AlphaGo Zero which was able
to achieve superhuman performance using deep convolutional
neural networks and training solely from games of self-play
by reinforcement learning. In 2017, DeepMind generalized
it’s approach into an AlphaZero[ 0] algorithm that achieved
within 24 hours a superhuman level of play in the games of
chess, shogi, and Go by defeating world-champion programs,
Stockfish, Elmo, and 3-day version of AlphaGo Zero in each
case.

Instead of a handcrafted evaluation function and move
ordering heuristics, AlphaZero utilises a deep neural network.
This neural network takes the board position s as an input and
outputs a vector of move probabilities p for each action a, and a
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scalar value v estimating the expected outcome z from position
s,v ~ FE[z|s]. AlphaZero learns these move probabilities and
value estimates entirely from self- play; these are then used
to guide its search.
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Fig. 1: Training AlphaZero for 700,000 steps. Elo ratings were
computed from evaluation games between different players
when given one second per move [10]

The aim of this project is to recreate (on a smaller scale)
the results of AlphaZero, that is, to train a program to learn
to play chess starting from the knowledge of game rules only
and learning through self-play exclusively. We also aim to
experiment with some modifications while implementing the
algorithm

II. BACKGROUND
A. MCTS

Monte Carlo tree search (MCTS) is a heuristic search
algorithm that is commonly used on deterministic games.

It works by building a search tree incrementally, starting
from the current state of the game. At each iteration, it
performs four steps: selection, expansion, simulation, and
backpropagation.

e Selection : A node in the tree is selected, based on
a balance between exploration and exploitation. MCTS
uses an upper confidence bound (UCB) formula, such as
UCT [6] (Upper Confidence bounds applied to Trees), to
determine which node to select.

o Expansion: MCTS adds one or more child nodes to the
selected node, representing possible actions or moves
from that state.

o Simulation/Rollout: MCTS randomly plays out the game
from the expanded node until a terminal state or a
predefined depth is reached.

o Backpropagation: MCTS updates the information of the
nodes visited during the simulation, such as the number of
visits and the average reward or value. This information
is used to guide the selection of nodes in future iterations.



Fig. 2: Standard MCTS [9]
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MCTS repeats these four steps until a time limit or a
computational budget is reached. Then, it chooses the best
action or move based on the information stored in the root
node of the tree.

For the purposes of standard 8x8 chess, however, the Selec-
tion and Rollout/Simulation Steps of the MCTS are extremely
expensive. This is because

1) The number of actions possible are generally too large.
2) Simulation may involve too many steps as the length of
the game may be too long with random moves.

Thus modifications are made to the MCTS algorithm by
AlphaZero which are:

1) In the simulation step, a neural network is used to predict
the next moves. The probabilities predicted for each
action are used as the prior distribution for the MCTS.

2) Instead of a rollout, the value predicted by the neural
network is utilised for updating the search tree.

B. Neural Network and Representation

1) Architecture: The neural network consists of a deep
convolutional block, a policy head and a value head.

The game state is firstly converted to its tensor representa-
tion of shape M x 8 x 8. This is encoded into a latent space
representation with the deep convolutional block.

The convolutional block consists of 19 Residual Blocks[3],
each consisting of 2 convolutional blocks and a skip connec-
tion. Each convolutional block consists of 2 2D convolutional
layers with kernel size 3 and 256 output channels, Batch Norm
layers, and a ReLU activation.

This encoding is passed to the policy head and value head
which produce a policy output and value output. The policy
head consists of a convolutional layer and batch norm layer
with ReLU activation followed by a linear layer. The output

activation is sigmoid. The value head consists of another con-
volutional and batch norm layer with relu activation, followed
by two linear layers. The output activation is tanh. The output
to policy is a 73-8-8 flattened tensor with each corresponding
to a different action. The legality of these moves are not
explicitly enforced here.

2) Input Representation: We represent each state as a stack
of 8 x 8 planes. For a given board, each of the 12 different
types of pieces (6 of each colour) correspond to a different
plane with a value of 0 or 1 based on the presence of the
piece on the corresponding square.

Additional game state variables are represented by filling
the corresponding plane uniformly.

The original AlphaZero considers the most recent 8§ board
states in its history. Additional planes for repetition counter
(for each of the 8 states and 2 players), as well as 7 additional
planes are maintained (colour, move counter, 4 castling rights,
no-progress count). Thus, here N = 119.

Given hardware and time constraints we eschewed history
representation to reduce the need for more training data. Thus
in our case, the input has N = 19 planes.

3) Output Representation: The output of the value head is
a float that ranges from —1 to +1

The output of the policy head is a flattened 73 - 8 - 8
tensor corresponding to 73 8 x 8 planes. Each of the plane
corresponds to a different type of move - relative to the
starting square . And for a given index, it corresponds to
the corresponding move on a piece belonging on that square,
i.e. for each possibilty for final-square — initial-square. There
are 56 “Queen type moves’ - i.e vertical, horizontal, and
diagonal. There are 8 ”Knight Type” moves. For pawns, there
are additional possibilities involving promotion. Hence the
default is considered as a queen promotion, and 9 additional
planes are for each type of underpromotion - rook, knight,
bishop and the straight and diagonal moves.

The policy output is interpreted as probabilities for each
move.

Note that many of the indices of the output tensor will
never correspond to any legal moves. And for a given state,
most of the moves will be illegal. Legality is checked by the
environment, and not the neural network, and it is expected
that it will learn the rules of the game with the appropriate
loss function.

III. METHODOLOGY & IMPLEMENTATION

We referred to an open-source implementation of AlphaZero
by Tuur Vanhoutte[!3] along with his bachelor thesis [14] on
the same while implementing SigmaZero.

A. MCTS

Monte Carlo Tree Search has three major steps. The eval-
uation step is ultimately done by agent and thus we are not
describing it in detail here. We implemented the entire MCTS
algorithm in C++ and interfaced it with Python using the Boost
library[1].



1) Selection of child: At every node, we select the best
child of that node to create a game path. Best can be decided
by various metrics depending on if we want exploitation or
exploration. During exploitation we choose the node corre-
sponding to the edge having maximum value of NI:VE 7 where
W, is the value of the action-value of the edge and N, the
number of times the edge is visited. To increase exploration,
we also inject Dirichlet noise into the probability distribution.
Let d be the Dirichlet noise and r be the exploration rate,
using it we define an upper confidence bound.

Ny,
N, +1

N,, is the number of times we have visited the node that we
are currently on, while N, is the number of times of we have
visited the corresponding edge. We either add or subtract the
UCB from NZVCl to decide the next edge in the game path.
We add it in case of white’s turn, while subtract in case of
black’s turn. Above procedure is recursively done until we
reach a leaf node.

2) Expand: After selecting children recursively, we reach
a leaf node. We check if the leaf node is a terminal node
(corresponding to win, loss or a draw) i.e. no valid moves are
possible. If it does we set its value appropriately and move
onto the backpropagation step. If valid moves are possible, we
create edges and nodes corresponding to all the valid moves.
Newly created nodes are assigned values predicted by the
agent. We now move onto the backpropagation step.

3) Backpropagate: We backtrack along the game path that
we had stored. The visit counts NV, and NN, for each edge
and node encountered on the path is incremented by one. The
value of the leaf node is added to the action-value of each
edge W,

Above four steps are repeated for NUM_ITER times whose
value is typically kept 400 or 800. In our training and
evaluation, we set its value to 800.

UCB=r-d-

B. Training on Puzzles

We recognised the inefficiency of training the model solely
through end-to-end game simulations. We thus altered the base
training protocol so that our network can recognize patterns
include checkmate scenarios, piece advantages, threats, and
positional advantages faster.

Consequently, we incorporated self-play runs that initialised
the board from intermediate positions, leveraging the Lichess
puzzle dataset [8] for this purpose. Our training approach
involves allocating a fraction p of the training to puzzle-based
runs and the remaining fraction (1 — p) to end-to-end game
simulations. In our experiments we tweak this value of p.

C. Training and Evaluation

1) Training: Training primarily consisted of two aspects:
Collecting experiences and optimising model on collected
experiences. These two were performed in parallel.

Collecting experiences involved letting two instances of
the current best-model play against each other. The initial

position was either chosen to be a starting position from a
puzzle with probability p = 0.6, or the starting board position
with probability 1 — p. After each move, the tuple (s, =),
where s is the state of board before the move, and 7 the
posterior probability distribution over legal actions obtained by
performing MCTS simulations, is stored in a memory. Each
game was played till either termination by draw or win, or
truncated after a maximum of 7' = 75 moves, after which
the winner is approximated using an evaluation function. The
result z is then back-propagated to all the tuples in the
memory, and the modified tuples (s, 7,v) are stored in the
memory. The memory is then saved to a disk, later to be used
in training.

During each training phase, all the experience tuples' of
the form (s, 7, v) collected so far were aggregated in a replay
buffer. Mini-batches of size N were sampled randomly from
the replay buffer, and the model was optimised on the sampled
experiences. The loss function for the model (parameterised
by weights 0) is:

Lo = (v—2)* — 7" log(pg) + Al|6]13 (1)

where zy is the value estimation, and p, the policy estima-
tion for state s.

Each such backward pass is counted as one time-stamp.
One training phase involved optimizing the model for 7' time-
stamps.

The training was done in two stages:

o For the initial stage, the training was done with learning
rate o = 0.02, mini-batch size N = 128 and number of
time stamps 7" = 40, 000

« For the second stage, the training was done with learning
rate o = 0.002, mini-batch size N = 128 and number of
time stamps 7" = 100, 000

2) Evaluation: Each training phase was followed by an
evaluation phase, where the newly trained model was evaluated
against the current best-model. The evaluation consisted of
playing 2K games between the two agents. K different
opening were chosen randomly as starting positions for the
game, to add diversity to the evaluation and not let agent be
good at few openings only. For each opening, two games were
played, by allowing each agent to play once as white and once
as black.

The newly trained model replaced the current best-model
if it won K or more games. Since playing games during
evaluation was a time consuming operation for us, the number
of different openings in evaluation phase was set to K = 3.

IV. EXPERIMENTS
Some of the experiments and modifications attempted to try
and improve performance or get a speed up for training are:

1) In our first run we trained the model on a large propor-
tion of puzzles over games (Setting the proportion of

IThese include all the experiences collected so far from all the models. We
reused the experiences of the discarded models as well due to time constraints,
since collecting new experiences was an expensive operation
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puzzles to p = 0.8). Since puzzles are relatively short
sequences of moves (generally with forced moves) that
feature different patterns that appear frequently in real
games we expected the neural network used to estimate
the value function to learn these patterns like humans do.
However, due to an imbalance in the puzzle dataset, most
of the puzzles had a winning evaluation for white and
the value function learnt this instead of the patterns. As
a consequence, it gave a winning evaluation for white
in every position. The proportion of puzzles to actual
games was hence decreased and regularisation added to
the training loss.

Initially, a simple evaluation function, which counts the
score of each remaining piece and assigns a score of
0.25 to the player with a clear majority, was used to
approximate the position in case of truncation. However,
this may not be the best evaluation as it only considers
the pieces and not other aspects, such as positional ad-
vantage, piece development and king threat. Hence, we
decided to use Stockfish’s position evaluation function
[12] to approximate the value of a position °, in hopes
that the value function’s training could be accelerated
by more accurate estimates in the collected data set.
While training we could consider an entire game as a
single experience. In this case, the model finds out the
outcome only at the end of the game. However, when we
backpropagate through the multiple moves of the game
it is very difficult to learn which moves led to the result
and which ones were counterproductive, for example,
the agent could play many good moves but one blunder
could lose the game and all the moves will be penalized
for a negative result. This slows down the training a lot,
therefore, we instead decided to go with each move as
a training experience. This allows us to give the model
instant feedback rather than wait for the game to finish.

Having incorporated all these changes, the model was
trained for roughly one week, collecting experiences
from a total of 3227 games, and the plots of the loss
function observed for the first stage (with learning rate
o = 0.02) are shown in figures 4 and 5 and the second
stage (with learning rate o = 0.002) are shown in figures
6 and 7. The plots show the variation in loss during each
time stamp and a running average.
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V. RESULTS
A. Policy function learning the rules of chess

The decrease in the cross entropy loss between MCTS

2This may be considered as supervision, violating the no supervision rule ) . : R
policy (which assigns probabilities only to legal moves) and

of AlphaZero
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the model’s policy could be explained by model outputting
policies which assign higher probabilities to legal moves. To
demonstrate this, a random chess board position is used, and
the planes of the action tensor of the trained model are plotted
as grey-scale images, with the intensity of a cell being propor-
tional to the probability of the move which the cell corresponds
to. The planes were compared with MCTS’s action policy
planes and a randomly initialised model’s action policy planes.
The results obtained are shown in figures 8 and 9. It was
observed that the trained model assigns higher probabilities to
only a few blocks. Some of these still correspond to illegal
moves, but it was observed that many of the legal moves
also got higher probabilities, from which we can infer that
the agent’s policy function had started learning to make legal
moves.

f

(a) Random Model: Qd7  (b) Trained Model: Qh6#
Fig. 10

Fig. 11: exf1=N#

B. One move checkmates

It was observed that the agent got better at finding one-move
mates. A vanilla MCTS working with a randomly initialised
model is able to find to find one move check mates in positions
having only a few legal moves, but fails when the number
of legal moves increases. The trained model however has
improved upon this, and is now able to find one move mates
in more complex board positions. One such example is shown
in figures 10a and 10b.

However, the model is still unable to find longer mate
sequences or some other simple tactics.

C. Pawn Promotion

It was observed from the evaluation games that the agent
learnt that promoting pawn to queen is the best option.
However, we observed instances of under promotion if it led
to check mate, again validating our hypothesis that the agent
had started learning mate in one actions. One such instance is
shown in figure 11

However, the agent had not reached human level perfor-
mance in chess. It still hangs pieces, and does not capture
free pieces often. We also observed that the agent prefers
king moves. One possible explanation can be attributed to the
experiences collected from puzzles, which involved a lot of
checks, resulting in a significant number of king moves in
the replay buffer. The agent has also not learnt the strategic
importance of castling, again due to most puzzles not having
castling as a legal move.

A video of a game played by the final agent against a human
on our GUI can be found here *

3Note this is rather slow due to the agent running on CPU.


https://drive.google.com/drive/folders/18x4usppypEMzvOBg392J9WI2OyPgjE6_?usp=sharing

VI. FUTURE WORK AND ROOM FOR IMPROVEMENT

We faced constraints related to hardware and compute time
while training our model. We also were unable to perform any
hyperparameter tuning.

Applying Monte Carlo Tree Search (MCTS) in C++ did
provide a significant performance boost over the python im-
plementation, but the task of eliminating other bottlenecks
remained. The sequentiality of MCTS posed a challenge,
prompting consideration of batch training. Implementing con-
currency in some of the steps of MCTS such as expansion
proved to be a challenge. A reimplementation of MCTS and
the chess environment is preferred, aimed to facilitate more
seamless interaction with the agent, eliminating CPU-GPU
jumps and avoiding Python chess environment inefficiencies.

The insufficient number of games was identified as a prob-
lem. Our agent learnt using only 3227 games compared to
44 million games played by AlphaZero. Given these problems
of scale, it may be more reasonable to forego the tabula rasa
approach to learning.

One such change is using Stockfish evaluations for learning
the value function. This can be done until the MCTS trees
stabilize towards near optimal, after which the original training
protocol may be used to surpass stockfish. This does induce
bias towards existing strategies, but this may be a reasonable
trade-off.

We also faced imbalances in the ratio of experiences with
white having an advantage v/s black having an advantage, the
reason for which we could not explain. Better tuning of puzzles
and normal games, along with better protocol for evaluation
in case of truncation would be desirable.

Extending the training protocol to a multistep approach
could be considered. Our approach to incorporate puzzles in
training did indeed have positive effects despite inducing some
biases. This may point to some potential benefit in choosing
training data appropriately. One may also consider clamping
the tree depth to learn ideal short sequences with respect to
developong pieces. The feasibility of generating ’synthetic”
data tailored to expedite learning can also be considered.

Even as we eschewed move history in order to train our
network reasonably at the given scale, we do recognise its
utility in describing the move state. To obtain a functional
engine it may be necessary to incorporate some aspects of
board history in the input state. We may be able to strike
better balance between expressivity and performance with
more experimentation. One may be interested in searching
for a better deep representation of the chessboard such as
Chess2Vec [4] (which although uses Stockfish for analysis).
An unsupervised or semi-supervised Chess Representation
Learning formulation should be of interest, such as a Deep
Belief Network used for positional embedding in pos2vec of
DeepChess[2].

For evaluation purposes, we also suggest the idea of main-
taining multiple agents, similar to evolutionary approaches.
We note that it may possible for biases towards a particular
side may snowball if an Agent only self-plays. We may also

only accept an agent if it shows an improvement exceeding a
certain margin over 50%.
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