
Spectre Side Channel Attack

Hrishikesh Jedhe Deshmukh
210050073

Khushang Singla
210050085

Sankalan Baidya
210050141

Abstract—In the ever-evolving landscape of cybersecurity, the
emergence of sophisticated threats has compelled us to reassess
and fortify the modern computing systems. Spectre attacks
have garnered significant attention due to their ability to ex-
ploit vulnerabilities arising from speculative execution. Almost
every contemporary microprocessor architecture is vulnerable
to spectre attacks. Spectre attacks, a class of side-channel
attacks, exploit the speculative execution feature present in
almost all modern processors. By manipulating the processor’s
speculative execution pathways, malicious actors can leak
sensitive information from the victim’s memory. This paper
delves into Spectre attacks on without use of shared memory.
Not sharing memory is typically considered secure against
side-channel attacks. However, we demonstrate Spectre attack
without using shared memory to leak the victim’s private
information. We aim to shed light on the intricacies of the
Spectre attack without any shared memory and contribute
to the ongoing effort of making systems secure against these
speculative attacks.

1. Introduction

Computations performed by devices often leave observ-
able side effects beyond the normal output. Side channel
attacks focus on exploiting these side effects to extract
sensitive information.

Speculative execution is one of the design techniques
that has facilitated the increase in processor speed over
the last decade. This technique is used in almost every
modern processor and it guesses the likely future execution
path and prematurely executes instructions on this path.
Consider an example where program’s control flow depends
on uncached value present in the memory. Instead of idling,
processor guesses the path and then executes the instructions
on this path speculatively. Whenever the value is fetched
from memory, processors checks if its guess was correct.
If it was indeed correct, it continues on the same path,
otherwise it discards the results of the speculative execution
and resumes execution from the correct path.

Kocher et al.[2] demonstrated the viability of speculative
attacks on modern processors using a proof of concept code
which contains both attacker and victim in a single process.
Attacker and victim also accessed a shared array to make
this speculative attack possible. We extended this code to
make possible spectre attack in a multi-process environment
where attacker and victim are in different processes and

access shared memory. Then we also demonstrated this
attack on non-shared memory by using prime and probe
to retrieve the data brought in cache hierarchy by transient
instructions. Transient instructions are those instructions
which are speculatively executed but then the effect of these
instructions on the CPU is reverted back.

We have extended the original spectre attack code to
exploit the vulnerability when attacker and victim are in two
different processes while sharing some memory. Also we
showed viability of this attack in unshared memory setting,
by keeping both attacker and victim in same process without
accessing each other’s memory.

2. Related Work

2.1. Spectre attack

Original proof of concept code has a victim function
in which transient instructions are exploited by attacker to
retrieve secret data. The function is as follows:
void victim_function(size_t x) {

if (x < array1_size) {
temp &= array2[array1[x] * 512];

}
Branch predictor is initally mistrained to always predict

that the if statement is true by providing valid inputs
of x. Then attacker provides an invalid input of x to
the victim function. This causes the branch predictor to
mispredict and speculatively execute the if statement. The
transient instruction temp &= array2[array1[x] *
512] brings the data at array2[array1[x] * 512]
in the cache hierarchy. Attacker then accesses array2
indices in a loop and measures the time taken to access each
index. Note that array2 is shared while array1 is not.
If the time taken to access an index is less than a threshold,
it means that the data at that index was brought in the cache
hierarchy by the transient instruction. This way attacker can
retrieve the secret data.

Important thing to consider while carrying out spectre
attack is to not have speculative instructions before we
call victim functions. This is because the processor will
speculate even these instructions before it has chance to
specukate the instructions in victim function. This leads to
lesser accuracy in the attack.



2.2. Prime and Probe attack

Cache sets accessed by victim can be detected using
prime and probe [1]. In this attack, attacker first primes the
cache by accessing a set of cache lines. Then attacker waits
for the victim to access the same set of cache lines. Attacker
then probes the cache to see which cache lines are still in the
cache. The cache lines which are not present in the cache
are the ones accessed by the victim.

A linked list is used to prime the cache. After victim
accesses a cache set, the cache is probed using the same
linked list. Linked list is used to do prime and probe to
avoid the use of memory fences.

3. Methodology

3.1. Spectre attack as covert channel

Original code had both attacker and victim in the same
process. We separated them both into different processes
while retaining shared memory. Instead of array2, which
acted as shared memory in the original proof of concept
code, we mapped a file to both processes. This file now
acts as shared memory, having the exact same functionality
of array2.

Both attacker and victim are forked and execed by a
parent process. Both processes need to be mapped to the
same core of the CPU for this attack to work as we are
detecting the secret data by measuring its latency of access.
In the victim process, array2 points to the mapped file.
In the attacker process, array2 points to the same mapped
file. Thus we can use the memory of the file as shared
memory to probe for lines which are brought into cache
speculatively.

3.2. Spectre without shared memory

We modelled spectre attack without shared memory by
keeping attacker and victim in same process. Attacker and
victim do not access each other’s data structures. Attacker
first primes the cache by accessing a certain number of
linked list nodes. Then attacker calls the victim function with
valid input. Then attacker probes the cache by accessing the
same linked list nodes. This is done repeatedly to mistrain
the branch predictor. Then on the last iteration, attacker
calls the victim function with invalid input. This causes the
branch predictor to mispredict and speculatively execute the
if statement. Attacker then probes the cache to see which
cache lines have been accesses by the victim.

Prime and probe is done on L1D cache here. This is
possible due to the fact that attacker and victim reside in
the same process.

3.3. Spectre without shared memory - multiple
processes

We tried separating attacker and victim into two different
process while not having any shared memory. Method is

same as described before. Attacker primes the cache, then
calls the victim function and then probes the cache to
find the lines accessed by victim. We also mapped both
the processes to the same core. But this attack was not
successful.

4. Results

4.1. Covert channel

We were able to achieve very high accuracy on AMD
Zen 3 and Haswell for the case when attacker and victim are
in two different processes but have shared memory. For each
byte, we had 1000 iterations to detect it. Score in the below
figure denotes the number of times out of 1000 that the byte
was detected. Score of 999 in almost all cases shows that
the attack is very accurate.

Figure 1. Demonstration of spectre as covert channel

4.2. Prime and Probe

We used the existing code to carry out prime and probe
attack on L1D cache. Even in this case attacker and victim
reside in the same process. Prime and probe is highly
accurate on Haswell architecture but very inaccurate on
Alder Lake and Zen 3. We were able to detect the cache
lines accessed by the victim with almost 100% accuracy.

Figure 2. Normalized access times of cache sets



Above figure 2 shows normalized access time of cache
sets on Y-axis and set numbering on X-axis. To normalize
the times, we first find access times of all cache sets without
victim accessing any cache set. Then we subtract these times
from the access times of cache sets when victim accesses
them. This gives us the normalized access times. We can
see the cache set accessed by victim has considerably higher
access time than other cache sets. This shows that prime and
probe is highly accurate on Haswell architecture.

4.3. Spectre on unshared memory - single process

We achieved very high accuracy on Haswell by combin-
ing spectre and prime and probe for the case where memory
is not shared. Owing to the fact that prime and probe is
inaccurate on Alder Lake and Zen 3, we were not able to
achieve high accuracy on these architectures. We were able
to detect the secret byte with 100% accuracy on Haswell.

As we can observe in the Figure 3, the secret byte is
always detected with 100% accuracy. But with it, prime and
probe also detects few more bytes. But these are constant
over every iteration and thus can be filtered out easily. This
noise is present owing to the fact that victim also accesses
few more memory lines apart from the secret byte, so prime
and probe also detects these unwanted lines.

4.4. Spectre on unshared memory - multiple pro-
cesses

We were not able to achieve high accuracy on any of
the architectures for this case. Prime and probe is still able
to detect the line accessed by victim, but with it many more
lines are also being detected. The noise is very high in this
case. This is due to the fact that a context switch is needed
before the attacker can probe the cache. This context switch
brings in many more lines in the cache, thus creating this
noise.

5. Observations

5.1. Spectre on AMD and Intel

Spectre attack works with high accuracy on AMD pro-
cessors (we tried on Zen 3), but is extremely noisy on
Alder Lake. While mistraining the branch predictor, pseudo-
random access pattern is used to stop prefetcher from de-
tecting it. But prefetcher present on Alder Lake is still able
to detect this access pattern and prefetches the secret bytes
even before they are speculatively brought into cache. This
leads to very high noise in the attack.

Figure 4. Detection of secret bytes on Alder Lake

In the above figure 4, Y-axis denotes the number of times
the byte was detected out of 1000 iterations. X-axis denotes
the byte number. Red dotted line denoted the secret byte that
we want to leak. We can see that a peak is present on the
red line, denoting that the secret byte is being detected. But
at the same time lot of other bytes are also being detected.
This is the noise present in the attack. This noise is very
high on Alder Lake because of its prefetcher.

5.2. RDTSC binning

We also found out that RDTSC on Zen 3 processors
always returns the value which is a multiple of 32 or 33.
AMD might have implemented binning of RDTSC to avoid
timing attacks on its processors. Intel processors show no
suggestion of such a binning being implemented.

5.3. Flush variables involved in speculation

While carrying out spectre attack, in the speculative
condition of if(x < array_size), it is necessary to
ensure that the line corresponding to array_size is not
present in cache hierarchy. This ensures that the transient
instructions have enought time to load the secret memory
into cache hierarchy before they are squashed. Although
hard to verify, this observation also hints towards the fact
that the transient instructions are squashed as soon as the
branch condition result is obtained. Processor does not wait
for these transient instructions to reach the head of Reorder
Buffer before squashing them.

5.4. Branch Predictor

While mistraining the branch predictor on Haswell, we
unrolled the for loop so that the victim function gets called
by different instruction pointers. Spectre attack accuracy
dropped massively after doing this. Branch predictor was
not getting mistrained due to victim function being called
by different instruction pointers. This shows us that branch
predictor likely maintains a history of instruction pointers
from which the victim function was called. Having different



Figure 3. Demonstration of spectre without sharing of memory

instruction pointers likely causes this history to get fuzzy
leading to branch predictor not getting mistrained.

5.5. Prime and Probe using linked list

We also tried prime and probe attack without using
linked list. Instead we used memory fences to ensure that
the next memory access happens after the previous access
in completed. But this approach does not work, likely
due to memory fences adding heavy overloads of their
own leading to wrong timing measurements. Linked lists
naturally ensure that the next memory access happens after
the previous access is completed due to their structure.
Thus, using linked lists for prime and probe is superior to
using memory fences.

References

[1] Miro Haller. Cachesc. https://github.com/Miro-H/CacheSC, 2020.

[2] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre attacks: Ex-
ploiting speculative execution. In 2019 IEEE Symposium on Security
and Privacy (SP), pages 1–19, 2019.

https://github.com/Miro-H/CacheSC

	Introduction
	Related Work
	Spectre attack
	Prime and Probe attack

	Methodology
	Spectre attack as covert channel
	Spectre without shared memory
	Spectre without shared memory - multiple processes

	Results
	Covert channel
	Prime and Probe
	Spectre on unshared memory - single process
	Spectre on unshared memory - multiple processes

	Observations
	Spectre on AMD and Intel
	RDTSC binning
	Flush variables involved in speculation
	Branch Predictor
	Prime and Probe using linked list

	References

